224 research outputs found

    Vortex-glass phases in type-II superconductors

    Full text link
    A review is given on the theory of vortex-glass phases in impure type-II superconductors in an external field. We begin with a brief discussion of the effects of thermal fluctuations on the spontaneously broken U(1) and translation symmetries, on the global phase diagram and on the critical behaviour. Introducing disorder we restrict ourselves to the experimentally most relevant case of weak uncorrelated randomness which is known to destroy the long-ranged translational order of the Abrikosov lattice in three dimensions. Elucidating possible residual glassy ordered phases, we distinguish betwee positional and phase-coherent vortex glasses. The discussion of elastic vortex glasses, in two and three dimensions occupy the main part of our review. In particular, in three dimensions there exists an elastic vortex-glass phase which still shows quasi-long-range translational order: the `Bragg glass'. It is shown that this phase is stable with respect to the formation of dislocations for intermediate fields. Preliminary results suggest that the Bragg-glass phase may not show phase-coherent vortex-glass order. The latter is expected to occur in systems with weak disorder only in higher dimensions. We further demonstrate that the linear resistivity vanishes in the vortex-glass phase. The vortex-glass transition is studied in detail for a superconducting film in a parallel field. Finally, we review some recent developments concerning driven vortex-line lattices moving in a random environment.Comment: 133 pages Latex with figures. accepted for publication in Adv. Phy

    High resolution ultrasonography of peripheral nerves: measurements on 14 nerve segments in 56 healthy subjects and reliability assessments.

    Get PDF
    Purpose: The aim of this study was to assess different aspects of reliability in high-resolution ultrasonography (HRUS) of the peripheral nerves and to establish reference values for the most frequently examined nerve segments. Materials and Methods: A nerve size parameter, the cross-sectional area (CSA) of the C5, C6 and C7 cervical roots, the median, ulnar, radial, superficial radial, peroneal, tibial, and the sural nerves was measured using HRUS at a total of 14 predefined anatomical sites in two different cohorts of Results: The mean CSA of the 14 nerve segments ranged from 2 to 10mm2. The intra-rater, interrater and inter-equipment reliability was high with intraclass correlation coefficients of 0.93, 0.98, and 0.86, respectively. The CSA values showed no consistent correlation with age, height, and body weight, but males had significantly larger values than females for nerve segments on the armafter correcting for age,weight and height in multivariate analysis. CSA values did not differ when two independent cohorts were compared. Conclusion: Peripheral nerve ultrasonography is a reliable and reproducible diagnostic method in the hands of experienced examiners. Normal values for several upper and lower extremity nerves are provided by our study. healthy subjects (n = 56), and the inter-rater, intra- rater and inter-equipment reliability of measurements was assessed

    Non-universal ordering of spin and charge in stripe phases

    Full text link
    We study the interplay of topological excitations in stripe phases: charge dislocations, charge loops, and spin vortices. In two dimensions these defects interact logarithmically on large distances. Using a renormalization-group analysis in the Coulomb gas representation of these defects, we calculate the phase diagram and the critical properties of the transitions. Depending on the interaction parameters, spin and charge order can disappear at a single transition or in a sequence of two transitions (spin-charge separation). These transitions are non-universal with continuously varying critical exponents. We also determine the nature of the points where three phases coexist.Comment: 4 pages, 3 figure

    Nonequilibrium dislocation dynamics and instability of driven vortex lattices in two dimensions

    Full text link
    We consider dislocations in a vortex lattice that is driven in a two-dimensional superconductor with random impurities. The structure and dynamics of dislocations is studied in this genuine nonequilibrium situation on the basis of a coarse-grained equation of motion for the displacement field. The presence of dislocations leads to a characteristic anisotropic distortion of the vortex density that is controlled by a Kardar-Parisi-Zhang nonlinearity in the coarse-grained equation of motion. This nonlinearity also implies a screening of the interaction between dislocations and thereby an instability of the vortex lattice to the proliferation of free dislocations.Comment: published version with minor correction

    Nonequilibrium Phase Transitions of Vortex Matter in Three-Dimensional Layered Superconductors

    Full text link
    Large-scale simulations on three-dimensional (3D) frustrated anisotropic XY model have been performed to study the nonequilibrium phase transitions of vortex matter in weak random pinning potential in layered superconductors. The first-order phase transition from the moving Bragg glass to the moving smectic is clarified, based on thermodynamic quantities. A washboard noise is observed in the moving Bragg glass in 3D simulations for the first time. It is found that the activation of the vortex loops play the dominant role in the dynamical melting at high drive.Comment: 3 pages,5 figure

    Dynamic transition in driven vortices across the peak effect in superconductors

    Full text link
    We study the zero-temperature dynamic transition from the disordered flow to an ordered flow state in driven vortices in type-II superconductors. The transition current IpI_{p} is marked by a sharp kink in the V(I)V(I) characteristic with a concomitant large increase in the defect concentration. On increasing magnetic field BB, the Ip(B)I_{p}(B) follows the behaviour of the critical current Ic(B)I_{c}(B). Specifically, in the peak effect regime Ip(B)I_{p}(B) increases rapidly along with IcI_{c}. We also discuss the effect of varying disorder strength on IpI_{p}.Comment: 4 pages, 4 figure

    Hall noise and transverse freezing in driven vortex lattices

    Full text link
    We study driven vortices lattices in superconducting thin films. Above the critical force FcF_c we find two dynamical phase transitions at FpF_p and FtF_t, which could be observed in simultaneous noise measurements of the longitudinal and the Hall voltage. At FpF_p there is a transition from plastic flow to smectic flow where the voltage noise is isotropic (Hall noise = longitudinal noise) and there is a peak in the differential resistance. At FtF_t there is a sharp transition to a frozen transverse solid where the Hall noise falls down abruptly and vortex motion is localized in the transverse direction.Comment: 4 pages, 3 figure

    Quantum teleportation using active feed-forward between two Canary Islands

    Full text link
    Quantum teleportation [1] is a quintessential prerequisite of many quantum information processing protocols [2-4]. By using quantum teleportation, one can circumvent the no-cloning theorem [5] and faithfully transfer unknown quantum states to a party whose location is even unknown over arbitrary distances. Ever since the first experimental demonstrations of quantum teleportation of independent qubits [6] and of squeezed states [7], researchers have progressively extended the communication distance in teleportation, usually without active feed-forward of the classical Bell-state measurement result which is an essential ingredient in future applications such as communication between quantum computers. Here we report the first long-distance quantum teleportation experiment with active feed-forward in real time. The experiment employed two optical links, quantum and classical, over 143 km free space between the two Canary Islands of La Palma and Tenerife. To achieve this, the experiment had to employ novel techniques such as a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors, and entanglement-assisted clock synchronization. The average teleported state fidelity was well beyond the classical limit of 2/3. Furthermore, we confirmed the quality of the quantum teleportation procedure (without feed-forward) by complete quantum process tomography. Our experiment confirms the maturity and applicability of the involved technologies in real-world scenarios, and is a milestone towards future satellite-based quantum teleportation

    XY models with disorder and symmetry-breaking fields in two dimensions

    Full text link
    The combined effect of disorder and symmetry-breaking fields on the two-dimensional XY model is examined. The study includes disorder in the interaction among spins in the form of random phase shifts as well as disorder in the local orientation of the field. The phase diagrams are determined and the properties of the various phases and phase transitions are calculated. We use a renormalization group approach in the Coulomb gas representation of the model. Our results differ from those obtained for special cases in previous works. In particular, we find a changed topology of the phase diagram that is composed of phases with long-range order, quasi-long-range order, and short-range order. The discrepancies can be ascribed to a breakdown of the fugacity expansion in the Coulomb gas representation. Implications for physical systems such as planar Josephson junctions and the faceting of crystal surfaces are discussed.Comment: 17 pages Latex with 5 eps figures, change: acknowledgment extende
    • …
    corecore